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Abstract

A new critical criterion of period-doubling bifurcations is proposed for high dimensional maps. Without the dependence

on eigenvalues as in the classical bifurcation criterion, this criterion is composed of a series of algebraic conditions under

which period-doubling bifurcation occurs. The proposed criterion is applied to the analysis of period-doubling bifurcation

in a two-degree-of-freedom inertial shaker model. It can be seen in this example that the proposed criterion is preferable to

the classical bifurcation criterion in high dimensional maps.

r 2007 Elsevier Ltd. All rights reserved.
0. Introduction

Period-doubling bifurcation of maps (or discrete-time dynamical systems) generated by iterated maps of
nonlinear difference equations have attracted considerable attention in both theoretical studies and practical
applications [1–3]. The software package MATCONT [3] allows one to compute period-doubling bifurcation
points by using a prediction-correction continuation algorithm based on the Moore–Penrose matrix pseudo-
inverse. The analysis of the normal forms of this bifurcation, which determines the type of bifurcation
solutions and their stability, is presented in Ref. [1]. It is important to stress that the critical bifurcation
conditions in the classical bifurcation theory are stated in terms of the properties of eigenvalues of Jacobian
matrix [1,2]. Unfortunately, analytical expressions of all eigenvalues with respect to the bifurcation
parameters, in general, are unavailable for a non-constant matrix of high order. This characteristic results in
two obvious limitations of those classical critical criteria for high dimensional systems. One is that it is always
a common idea to numerically compute all the eigenvalues for checking the eigenvalue assignment by scanning
certain range of the system parameters [3]. The other is that it is non-trivial to numerically compute the
transversality condition (i.e., the derivative of eigenvalue modulus with respect to the bifurcation parameter)
owing to the lack of the analytical expression of the eigenvalue. These limitations becomes the obstacle in
analyzing the effect of the parameters to the bifurcation in high dimensional systems, especially for the inverse
problem of bifurcation controls (i.e., creation of certain type of bifurcation by control) [4–7]. The detailed
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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discussion [8] on the limitations of the classical bifurcation theory is presented for the inverse problem of Hopf
bifurcation control. A new critical criterion of Hopf bifurcation for maps (the so-called Neimark–Sacker
bifurcation) [8] was already established on the basis of the Schur–Cohn Stability Criterion [9]. As compared
with the methodologies of numerical search for bifurcation points based on the classical bifurcation definitions
[1,2], the effect of the bifurcation parameters may be explicitly formulated.

Researches into vibro-impact dynamics are of great significance for noise suppression, reliability analysis
and optimization design of mechanical systems whose components collide with each other or other rigid
obstacles [10]. The operation principle of vibro-impact systems such as impact dampers, inertial shakers, gears,
offshore structures and milling machinery is based on the repeated impacts. These impacts introduce strong
nonlinearity [11,12] into the system. The bifurcation phenomena of vibro-impact systems have already been
extensively studied in literature, see e.g. grazing bifurcations [13–16], C-bifurcations [17], period-doubling
bifurcations [18], Hopf bifurcation in non-resonance case [19] and at resonance points [20] as well as the
codimension bifurcations including degenerate Hopf bifurcation [21], interaction of Hopf and period-doubling
bifurcations [22], and Hopf–Hopf bifurcation [23].

This paper is motivated by the previous results reported in Refs. [18–23]. In the literature [18–23], the rich and
complicated bifurcation phenomena of multi-degree-of-freedom vibro-impact systems have been reported.
However, the effect of parameters on the bifurcations are not discussed. A common idea in the existing literature
is that the classical critical criterion stated in the definition of bifurcation is employed to search for a bifurcation
parameter point. In order to determine the existence of bifurcations, one used to check point by point in certain
parameter range if the critical conditions of both eigenvalue assignment and transversality condition are satisfied
or not. As a result, one usually has to keep his fingers crossed to search for a proper parameter point at which the
bifurcation occurs. Therefore, it is of great significance to develop proper bifurcation critical criteria for high
dimensional or complicated dynamical systems such as multi-degree-of-freedom vibro-impact systems.

The main purpose of this paper is to develop a new critical criterion without using eigenvalues for period-
doubling bifurcations. The new critical criterion, which is verified in Section 1, is composed of a set of
equalities and inequalities which may avoid the difficulty brought about by the requirement of directly
computing the eigenvalues. In Section 2, this criterion is used to precisely locate the critical bifurcation
parameter region of a four-dimensional inertial shaker. The projection method [24,25] is employed to analyze
the stability of the bifurcation solution. Finally, we show the rich dynamic responses of the vibro-impact
system by numerical simulations. Section 3 concludes this paper.

1. New critical criterion

Consider a general n-dimentional map

xkþ1 ¼ f mðxkÞ, (1)

where xk+1, xkARn are the state vectors, k is the iterative index and mARm is the bifurcation parameter. The
definition of period-doubling bifurcation for map (1) is stated as follows:

Definition 1 (Kuznetsov [1] and Guckenheimer and Holmes [2]). Assume that fm has a fixed point x0.
A period-doubling bifurcation takes place at a bifurcation parameter point m ¼ m0 if and only if the system
(1) satisfies the following two conditions:
(C1)
 Eigenvalue assignment: at m ¼ m0, the Jacobian matrix Dxk
f mðx0Þ has one real eigenvalue l1(m) with

l1(m0) ¼ �1and the rest lj(m), j ¼ 2; . . . ; n inside the unit disk, i.e., jljðm0Þjo1;

(C2)
 Transversality condition: ðqjl1ðmÞjÞ=qmjm¼m0a0.
The conditions (C1) and (C2) denote the critical conditions of period-doubling bifurcation which determine
the existence of the bifurcation in maps. Definition 1 is also called as the classical critical criterion. It is clear
that the classical critical criterion is stated in terms of the properties of eigenvalues. For instance, the
transversality condition means that the real eigenvalue l1(m0) ¼ �1 lying on the unit circle will cross the unit
circle at non-zero rate if m varies nearby m0. It may be mentioned that some stability criteria without using
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eigenvalues, such as the Schur–Cohn Stability Criterion [9,26] and the formulation of the critical constraints
for stability limit [27–29], represent the stability conditions with significant computational simplification for
multi-parameter linear discrete system. We next show that these stability criteria may be modified to formulate
a new bifurcation criterion.

In order to propose the new critical criterion, the characteristic polynomial of map (1) at the fixed point x0 is
defined as below:

pmðlÞ ¼ a0l
n
þ a1l

n�1
þ � � � þ an�1lþ an, (2)

where a0 ¼ 1 and aj ¼ aj(m), j ¼ 1; . . . ; n. Consider a series of determinants: D�0 ðmÞ ¼ 1, D�1 ðmÞ; . . ., D
�
n ðmÞ,

which are defined as below:

D�j ðmÞ ¼

1 a1 a2 � � � aj�1

0 1 a1 � � � aj�2

0 0 1 � � � aj�3

� � � � � � � � � � � � � � �

0 0 0 � � � 1

0
BBBBBB@

1
CCCCCCA
�

an�jþ1 an�jþ2 � � � an�1 an

an�jþ2 an�jþ3 � � � an 0

� � � � � � � � � � � � � � �

an�1 an � � � 0 0

an 0 � � � 0 0

0
BBBBBB@

1
CCCCCCA

������������

������������
; j ¼ 1; . . . ; n. (3)

The following conditions (H1) and (H2) in Proposition 1 can be formulated to establish a critical criterion
of period-doubling bifurcation without using eigenvalues.

Proposition 1. Assume that fm has a fixed point x0. A period-doubling bifurcation takes place at m ¼ m0 if and only

if the following conditions (H1) and (H2) are satisfied,
(H1)
 Eigenvalue assignment: The following equalities or inequalities hold:

pm0 ð�1Þ ¼ 0; pm0 ð1Þ40; D�n�1ðm0Þ40; D�j ðm0Þ40; j ¼ n� 2; n� 4; . . . ; 1

ðor 2Þ; when n is odd ðor even; respectivelyÞ; ð4Þ
(H2)
 Transversality condition: Pn
i¼1a0ið�1Þ

n�iPn
i¼1ðn� j þ 1Þð�1Þn�jaj�1

a0, (5)
where a0i stands for the derivative of aiðmÞ with respect to m at m ¼ m0.

Proof. Notice that if the conditions (H1) and (H2) are equivalent to (C1) and (C2), then they constitute a new
critical criterion of period-doubling bifurcations for maps. Firstly, we show that (H1) is equivalent to (C1). In
(H1), pm0

ð�1Þ ¼ 0 indicates that the Jacobian matrix Dxk
f mðx0Þ has one real eiganvalue �1 at m ¼ m0 and vice

versa. Thus, the characteristic polynomial (2) of map fm at m ¼ m0 can be rewritten as

pmðlÞ ¼ ðlþ 1Þ ~pmðlÞ, (6)

where

~pmðlÞ ¼ ln�1
þ b1l

n�2
þ � � � þ bn�2lþ bn�1. (7)

All what we have to do further is prove that all the roots of the polynomial equation ~pm0
ðlÞ ¼ 0 remain

inside the unit disk. Now we introduce a set of new determinants ~D
�

j ðmÞ for ~pmðlÞ, j ¼ n� 1; n� 2; . . . ; 1; 0,

similar to Eq. (3). Furthermore, the following Lemma 1 is needed to serve our purpose. &

Lemma 1 (Brown [29]). The necessary and sufficient conditions that the roots of ~pm0
ðlÞ ¼ 0 remain inside the

unit circle are given by one of the following conditions (L1) and (L2)
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(L1)
 ð�1Þn�1 ~pm0 ð�1Þ40, ~pm0 ð1Þ40 as well as ~D
�

j ðmÞ40, j ¼ n� 2; n� 4; . . . ; 2 or 1, or the equivalent,
� �
(L2)
 ð�1Þn�1 ~pm0 ð�1Þ40, ~pm0 ð1Þ40, ~Dn�2ðmÞ40 as well as ~Dj ðmÞ40, j ¼ n� 3; n� 5; . . . ; 1 or 2.
Next, we show that ~pm0
ðlÞ ¼ 0 satisfies the conditions stated in Lemma 2 when (H1) holds. By expanding the

RHS of Eq. (6) and comparing all the coefficients with Eq. (2), it is easy to obtain,

am ¼ bm þ bm�1, (8)

where m ¼ 1; . . . ; n, b0 ¼ 1 and bj ¼ 1 if j4(n�1) or jo0. We substitute Eq. (8) into a set of determinants
D�j ðmÞ, j ¼ n� 1; n� 2; . . . ; 2 or 1, and do the elementary row operations for each row of D�j ðmÞ as follows:
starting from the last row of D�j ðmÞ, multiply �1 with the mth row and add it to the (m�1)th row, and then
multiply �1 with the new (m�1)th row and add it to the (m�2)th row. Repeating this operation until the first
row, we can obtain:

D�j ðm0Þ ¼ ~D
�

j ðm0Þ; j ¼ n� 1; n� 2; . . . ; 2 or 1. (9)

Substitution of Eq. (9) into the inequalities in (H1) gives ~D
�

j ðmÞ40, j ¼ n� 2; n� 4; . . . ; 2 or 1.
Furthermore, the following two formulations proven in Ref. [29] are needed to serve our purpose:

~D
þ

n�1ðm0Þ ¼ ~pm0
ð1Þ ~D

�

n�2ðm0Þ and ~D
�

n�1ðm0Þ ¼ ð�1Þ
n�1 ~pm0

ð�1Þ ~D
�

n�2ðm0Þ. (10)

It is clear that (H1) guarantees ð�1Þn�1 ~pm0 ð�1Þ40 and ~pm0 ð1Þ40 when Eq. (9) is substituted into Eq. (10).
With the satisfaction of the conditions in (L1), all roots of the polynomial equation ~pm0ðlÞ ¼ 0 lie inside the unit
disk. We have deduced (C1) from (H1). Inversely, if (C1) holds, it is easy to check that we have pm0

ð�1Þ ¼ 0 and
the rest inequalities in (H1) except for pm0

ð1Þ40 by successively applying Eqs. (6), (9), Lemma 1 and Eq. (10). It
follows from Eq. (6) that pm0

ð1Þ ¼ 2 ~pm0
ð1Þ. This shows pm0

ð1Þ40 due to ~pm0
ð1Þ40, which is guaranteed by

Lemma 1. Therefore, one can ascertain further that that (H1) is equivalent to (C1) in Definition 1.

As to the equivalence of (H2) and (C2), we differentiate both sides of pmðlÞ ¼ 0 with respect to m directly and
then substitute lðm0Þ ¼ �1 into the results. Then the equivalence of (H2) and (C2) can be easily checked out.

It should be stressed that different from the conditions (C1) and (C2), the conditions (H1) and (H2)
independent of the cumbersome computations of all eigenvalues, are formulated as a set of simple equalities or
inequalities. To clarify these, taking the four-dimensional system (1) as an example, we have the following
Corollary 1 according to Proposition 1.

Corollary 1. For system (1) with n ¼ 4, a period-doubling bifurcation takes place at m ¼ m0 if and only if the

following conditions are satisfied:
(E1)
 Eigenvalue assignment: 1� a1 þ a2 � a3 þ a4 ¼ 0, 1þ a1 þ a2 þ a3 þ a440,
ja2 � a2a4 þ a4 � a3

4 þ a4a2
1 � a1a3joa2a4 � a2a2

4 þ 1� a2
4 þ a1a3a4 � a2

3; ja3 � a4a1jo1� a2
4;
(E2)
 Transversality condition:

a04 � a03 þ a02 � a01
4� 3a1 þ 2a2 � a3

a0.
Assume that there are two system parameters related to this kind of bifurcations. If Definition 1 is used to
search for a critical parameter point, we have to resort to the cumbersome computations of all eigenvalues
point by point by sweeping the parameter plane. As a matter of fact, it is extremely difficult to luckily
encounter the accurate parameter point in a plane. However, in virtue of the algorithm in Corollary 1, the
inequalities play an important role in explicitly locating the critical bifurcation parameter region and rapidly
picking off the insignificant parameter domain. Thus, the exhausted numerical search for a critical parameter
point may be avoided and the significant computational simplification may be achieved. In particular,
it should be mentioned that for the transversality condition only the computation of the derivatives of the
coefficients of the characteristic polynomial (2) with respect to the bifurcation parameter is needed and the
difficulty in obtaining the derivatives of eigenvalue modulus is overcome.
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Furthermore, it is easy to check that the inequalities in (H1) satisfy with the stability condition (L2) stated in
Lemma 1 if the condition pm0 ð�1Þ ¼ 0 in (H1) becomes ð�1Þnpm0ð�1Þ40. This implies that Proposition 1 is
feasible to simultaneously locate the set of critical bifurcation parameters as well as the stability parameter
range of the fixed point x0. It should be mentioned that Definition 1 is incapable of regulating the stability
parameter range nearby the critical parameter points.
2. Application to an inertial shaker model

2.1. Mechanical model of inertial shaker and its Poincare map

The inertial shaker model [22] is shown schematically in Fig. 1. A vibrating platform with mass M is
connected to the foundation with a linear spring with stiffness K and a linear viscous dashpot with damping
constant C. The platform is subjected to a harmonic excitation with amplitude F0, excitation frequency o and
phase angle d. The rigid-body cast with mass m is in the gravitation field without other forces when no impact
occurs. Consequently, the cast bounces on the flat horizontal surface of the platform. Let y and x denote the
displacements of mass m and mass M, respectively. An impact between the masses m and M occurs while
y ¼ x. In this paper, we consider a combination of smooth motions governed by linear differential equation
interrupted by a continuous sequence of contacts at non-zero relative speed.

The impact dynamics of the inertial shaker system can be described by the following mathematical problem:

M €xþ C _xþ Kx ¼ F 0 sinðwtþ dÞ

€y ¼ �g
ðxayÞ

(
(11)

and

M _x� þm _y� ¼M _xþ þm _yþ
_xþ � _yþ ¼ �Rð _x� � _y�Þ

ðx ¼ yÞ;

(
(12)

where _xþ and _x�, _yþ and _y� are the velocities at contact points just after and before impacts; R indicates the
constant coefficient of restitution.

Scaling x ¼ sx̄, y ¼ sȳ, y ¼ wt with s ¼ F0

�
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ2 þ ð2zzÞ2

q� �
, we transform the system (11) and

(12) into the following non-dimensional form by dropping the bar for convenience:

€xþ
2z
z
_xþ

1

z2
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2ð Þ

2
þ 2zzð Þ

2

q
z2

sinðyþ dÞ ðxayÞ;

€y ¼ �e1

8><
>: (13)
Fig. 1. Schematic of an inertial shaker model.
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_xþ ¼
1� ZR

1þ Z
_x� þ

Zð1þ RÞ

1þ Z
_y� ðx ¼ yÞ, (14)

_yþ ¼
1þ R

1þ Z
_x� þ

Z� R

1þ Z
_y� ðx ¼ yÞ, (15)

where e1 ¼Mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ2 þ ð2zzÞ2

q �
ðF 0z

2Þ, z ¼ w=wn, wn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, z ¼ C=ð2MwnÞ, Z ¼ m=M and

b ¼ F 0=Mg.
If the motion of a vibro-impact system between the impacts holds all smoothness properties, a general way

to characterize the repeated impact behavior is to study the so-called Poincare map derived from the equations
of motion and the boundary condition. Each iteration of the map corresponds to one of the repeated impacts.
By choosing a Poincare section, s � R4 � S, where s ¼ fðx; _x; y; _y; yÞ 2 R4 � S;x ¼ y; _x ¼ _xþ; _y ¼ _yþg, one
can establish the four-dimensional Poincare map for system (13)–(15) as follows [13]:

X kþ1 ¼ f ðm;X kÞ, (16)

where X k ¼ ðxk; _xk; _yk; tkÞ
T; m denotes one or more parameters among z; z; Z;R;b; f : O! <3 � S1 stands for

the map function, and O � <3 � S1 is a connected open domain. Map (16) can be rewritten as

xkþ1 ¼ f 1ðxk; _xk; _yk; tkÞ ¼ f̂ 1ð
~yðxk; _xk; _yk; tkÞ;xk; _xk; tkÞ;

_xkþ1 ¼ f 2ðxk; _xk; _yk; tkÞ ¼ f̂ 2ð
~yðxk; _xk; _yk; tkÞ;xk; _xk; _yk; tkÞ;

_ykþ1 ¼ f 3ðxk; _xk; _yk; tkÞ ¼ f̂ 3ð
~yðxk; _xk; _yk; tkÞ;xk; _xk; _yk; tkÞ;

tkþ1 ¼ f 4ðxk; _xk; _yk; tkÞ ¼
~yðxk; _xk; _yk; tkÞ þ tk ðmod 2pÞ;

8>>>>><
>>>>>:

(17)

where xk; _xk; _yk; tk are the state variables just after kth impact and xkþ1; _xkþ1; _ykþ1; tkþ1 stand for the state
variables just after (k+1)th impact. ~y is the smallest root of the equation below:

Gðy; xk; _xk; tkÞ ¼ xðy; xk; _xk; tkÞ � yðy; _yk; tkÞ ¼ 0. (18)

By virtue of implicit function theorem, ~y can be represented as the implicit function of ~yðxk; _xk; _yk; tkÞ with
respect to xk; _xk; _yk; tk. It is now obvious that the established Poincare map (17) is implicit. This implies what
brings about the difficulty in bifurcation analysis of this kind of vibro-impact systems.

The vibro-impact system (11) and (12) can exhibit periodic-impact behavior under suitable system
parameters. The periodic-impact motions correspond to the fixed points of map (16). Suppose that there exits
a fixed point X 0ðmÞ ¼ ðx0; _x0; _y0; t0Þ

T for map (16) satisfying f ðm;X 0Þ ¼ X 0 as in Proposition 1. The fixed point
X 0ðmÞ stands for the period motion of system (13)–(15) with only one impact during one excitation period. We
finally discuss the existence of the fixed point X 0ðmÞ. Notice that one of the coordinate elements of the fixed
point X 0ðmÞ is t0 in the following form [22]:

t0 ¼ arccosðpe1ðð1� 2ZR� RÞ=ð1þ RÞ � 2ZðgðD0 � 1Þ þ zC0Þ=ðgðC2
0 þ ðD0 � 1Þ2ÞÞÞÞ, (19)

where C0 ¼ e�zð2p=zÞ sin gð2p=zÞ, D0 ¼ e�zð2p=zÞ cos gð2p=zÞ and g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
. If t0 exists, the absolute value of

cosðt0Þ should be less than 1. Therefore, for period-doubling bifurcation in the vibro-impact system (13)–(15),
the following inequality (20) should be the additional critical condition rather than the ones in (E1) and (E2):

jpe1ðð1� 2ZR� RÞ=ð1þ RÞ � 2ZðgðD0 � 1Þ þ zC0Þ=ðgðC2
0 þ ðD0 � 1Þ2ÞÞÞjp1. (20)
2.2. Existence of period-doubling bifurcation

In this subsection, we investigate the existence of the period-doubling bifurcation of map (16) at the fixed
point X 0ðmÞ based on the proposed critical criterion stated in Corollary 1.

Assume that z ¼ 1:7075883, z ¼ 0:09649167, R ¼ 0:9, Z 2 ð0:01; 1Þ, b 2 ð0:01; 5Þ. By setting m ¼ ðZ;bÞ, a
critical parameter point m ¼ m0 for period-doubling bifurcation is to be determined and the effect of the
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parameter m on the bifurcation will be discussed. The Jacobian matrix Df X m;Xð Þ of the established
map (17) at the fixed point X 0ðmÞ is derived first. Its characteristic polynomial can be written into the form (2)
as follows:

pmðlÞ ¼ a0ðmÞl
4
þ a1ðmÞl

3
þ a2ðmÞl

2
þ a3ðmÞlþ a4ðmÞ. (21)

According to Corollary 1, if m ¼ m0 is a critical parameter point of period-doubling bifurcation, the
conditions in (E1) and (E2) are satisfied at m ¼ m0. It is possible that the critical parameter m0 is not unique.
Certain areas consisting of all the critical parameter points may exist in the two-dimensional parameter plane
(Z;b). Inversely, by utilizing the conditions in (E1) and (E2) as well as inequality (20), we can explicitly locate
the critical bifurcation parameter region, i.e., a set of m0 in the parameter plane (Z;b).

Maple software is employed here to solve the equalities and inequalities in (E1), (E2) and Eq. (20) to obtain
the bifurcation plot. As shown in Fig. 2, the points on the open arcs AB and CD in the blank region consist of
the critical parameter points at which all conditions in (E1), (E2) and Eq. (20) are satisfied. The gray regions I
and II indicate the insignificant region in which at least one condition in E(1) fails. In the gray region III, the
condition (20) fails (correspondingly, the fixed point does not exist). The blank region is divided into three
parts by the arcs AB and CD. The LHS of arc AB and the RHS of arc CD stand for the stability region of the
fixed point X 0ðmÞ based on the Lemma 1 as all of the inequalities in (E1) and 1� a1 þ a2 � a3 þ a440 hold.
The other blank region surrounded by the arcs AB and CD represents the potential parameter region where
there may exist the solutions of period-doubling bifurcation. The points on the dash-dot lines l and m do not
satisfy the transversality condition (E2). Notice that one of extended parts of arc CD embeds in the gray
region II. Thus, it should be stressed that it is not enough to find a critical parameter point only by computing
pm0
ð�1Þ ¼ 0.
It should be stressed that the black arcs AB and CD represent the equality in (H1):

pm0 ð�1Þ ¼ 0, (22)

i.e., 1� a1 þ a2 � a3 þ a4 ¼ 0. The green dash-dot line l represents the equality:

a04 � a03 þ a02 � a01
4� 3a1 þ 2a2 � a3

¼ 0, (23)
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where a0i stands for the derivative of aiðZ;bÞ with respect to Z. The brown dash-dot line m represents the
equality:

a04 � a03 þ a02 � a01
4� 3a1 þ 2a2 � a3

¼ 0, (24)

where a0i stands for the derivative of aiðZ; bÞ with respect to b.
As already stated, the points in the open arc AB and CD are the critical bifurcation parameter points. As an

example, we choose one of the points on the open arc CD, m0 ¼ ðZ0; b0Þ ¼ ð0:5; 0:6Þ. It follows from Corollary
1 that a period-doubling bifurcation occurs at m0.

In summary, the inequalities in Corollary 1 may exclude some insignificant parameter regions in the
parameter plane and pick out the feasible parameter domain. According to Corollary 1, it is very convenient to
construct the bifurcation plot where the stability domain and the bifurcation domain in the parameter plane
are clear. Moreover, without requirement of computing the derivatives of eigenvalue modulus, Corollary 1
suggests the significant computational simplification for transversality condition, i.e., the sensitiveness analysis
of bifurcation parameter.
2.3. Stability analysis of bifurcation solutions

In this subsection, our task is to determine the stability of the bifurcated solutions in the vibro-impact
system (11) and (12) or the counterpart of map (16). The stability of bifurcation solutions depends on the
nonlinear property of map f in Eq. (16). Some methodologies such as the center manifold reduction and
normal form theory [1,30] and the frequency-domain reduction [31] are capable of determining stability
analytically. As an example, the Projection Method [24,25] is addressed here.

It is useful for the subsequent developments to introduce the Taylor series of the four-dimensional nonlinear
map (16):

X kþ1 ¼ AX k þQðX k;X kÞ þ CðX k;X k;X kÞ þ � � � , (25)

where A is the Jacobian matrix at the fixed point X 0ðmÞ at m ¼ m0; QðX k;X kÞ and CðX k;X k;X kÞ are the
symmetric bilinear vector and the symmetric tri-linear vector, respectively; the other terms of higher order are
not explicitly written in Eq. (25).

Notice that after determining m ¼ m0 and X 0ðm0Þ, the eigenvalues and eigenvectors of the Jacobian matrix A

is easily obtained. Let l and r denote the left and right eigenvectors of the eigenvalue l1ð0Þ ¼ �1, respectively.
Moreover, the eigenvector r with the first element being 1 is orthogonal to l, i.e., lr ¼ 1. For convenience of
statement, we further define an index a2 as follows:

a2 ¼ 2l½ ~Cðr; r; rÞ � 2 ~Qðr; ð ~A
T ~Aþ lTlÞ�1 ~A

T ~Qðr; rÞÞ�, (26)

where ~Qðx;xÞ ¼ AQðx;xÞ þQðAx;AxÞ, ~Cðx; x;xÞ ¼ ACðx;x;xÞ þ 2QðAx;Qðx;xÞÞ þ CðAx;Ax;AxÞ and
~A ¼ A2 � I . In what follows, the following Lemma 2 can be used to determine the stability of the bifurcated
solutions.

Lemma 2 (Abed and Fu [24] and Abed et al. [25]). If at m ¼ m0, the Jacobian matrix of (16) at the fixed point

X 0ðm0Þ has one eigenvalue l1ðmÞ satisfying l1ðm0Þ ¼ �1 and l01ðmÞjm¼m0a0, and the rest satisfying jljðm0Þjo1,

j ¼ 2; 3; . . . n, then at a small neighborhood of m ¼ m0, the system (16) bifurcates from X 0ðmÞ to the supercritical

period-doubling bifurcation trajectory (i.e., stable fixed point of order two) when a2o0, or unstable fixed point of

order two when a240.

In the example considered here, we obtain a2 ¼ �0:3541833. According to Lemma 2, we assert that the
period-doubling bifurcation of map (16) at m ¼ m0 gives rise to a pair of stable fixed points which map to each
other as the original fixed point X 0ðmÞ loses its stability.
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2.4. Simulations

In this section, one can graphically show the theoretical results as well as the rich dynamic behaviors of the
vibro-impact system (11) and (12) as the parameters vary further. It should be stressed that we employ the
original Poincare map (17) without any approximation rather than (25) for the simulations in the sequel. By
this way, the independence between the theoretical analysis and numerical validation is guaranteed.

For example, by setting m ¼ m0 þ Dm ¼ ðZ0 � 0:005;b0Þ, we simulate map (17) starting from the initial point
X ¼ X 0ðmÞ þ DX with DX ¼ ð0:001; 0:001; 0; 0ÞT. After 1500 impacts in the simulation, the results in Poincare
section are shown in Fig. 3. It is clear that the iteration near X0 converges to the stable fixed points of order
two which correspond to the stable periodic-impact motion with two impacts during tow excitation periods for
the inertial impact shaker in Fig. 1. The numerical results are consistent with the proposed theory.

Vibro-impact system may give rise to rich and complicated dynamic behaviors as the bifurcation parameter
varies [9,13]. In the blank region surrounded with arc AB and CD in Fig. 2, m ¼ ðZ0 � 0:008;b0Þ is chosen in
our numerical analysis. As shown in Fig. 4, the stable fixed points of order four bifurcate from the fixed points
of order two.

When Z decreases up to ðZ0 � 0:0111Þ, the system (17) exhibits more complicated dynamical behaviors.
The fixed points of order four lose their stability and the iteration converges to four invariant limit circles, as
Fig. 3. The bifurcation solution of Eq. (17): stable fixed point of order two: (a) the transient response from the fixed point to the

bifurcation solution; and (b) the results by canceling previous 500 impact points among 1500 impacts.

Fig. 4. Stable fixed point of order four in map (17) at m ¼ ðZ0 � 0:008;b0Þ.
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Fig. 6. Topologically varied circles in map (17) at m ¼ ðZ0 � 0:016;b0Þ.

Fig. 5. Four invariant circles as the previous 1000 impact points are not shown.

Fig. 7. Chaotic behavior in map (17) at m ¼ ðZ0 � 0:025; b0Þ.
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shown in Fig. 5. The dynamic behaviors evolve into chaos as the limit circles vary topologically (see Figs. 6
and 7).

3. Conclusions

In this paper, a new critical criterion of period-doubling bifurcation has been proposed for maps in a general
sense. It has a great potential to simplify the computation of determining the critical parameter points. It also
reveals the effect of parameters to the bifurcation. The feasibility is illustrated by the bifurcation analysis of
the implicit Poincare map of a multiple-parameter inertial impact shaker.
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